Function to conduct nested resampling.
Usage
fselect_nested(
fselector,
task,
learner,
inner_resampling,
outer_resampling,
measure = NULL,
term_evals = NULL,
term_time = NULL,
terminator = NULL,
store_fselect_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE,
callbacks = NULL,
ties_method = "least_features"
)
Arguments
- fselector
(FSelector)
Optimization algorithm.- task
(mlr3::Task)
Task to operate on.- learner
(mlr3::Learner)
Learner to optimize the feature subset for.- inner_resampling
(mlr3::Resampling)
Resampling used for the inner loop.- outer_resampling
mlr3::Resampling)
Resampling used for the outer loop.- measure
(mlr3::Measure)
Measure to optimize. IfNULL
, default measure is used.- term_evals
(
integer(1)
)
Number of allowed evaluations. Ignored ifterminator
is passed.- term_time
(
integer(1)
)
Maximum allowed time in seconds. Ignored ifterminator
is passed.- terminator
(bbotk::Terminator)
Stop criterion of the feature selection.- store_fselect_instance
(
logical(1)
)
IfTRUE
(default), stores the internally created FSelectInstanceBatchSingleCrit with all intermediate results in slot$fselect_instance
. Is set toTRUE
, ifstore_models = TRUE
- store_benchmark_result
(
logical(1)
)
Store benchmark result in archive?- store_models
(
logical(1)
). Store models in benchmark result?- check_values
(
logical(1)
)
Check the parameters before the evaluation and the results for validity?- callbacks
(list of CallbackBatchFSelect)
List of callbacks.- ties_method
(
character(1)
)
The method to break ties when selecting sets while optimizing and when selecting the best set. Can be"least_features"
or"random"
. The option"least_features"
(default) selects the feature set with the least features. If there are multiple best feature sets with the same number of features, one is selected randomly. Therandom
method returns a random feature set from the best feature sets. Ignored if multiple measures are used.
Examples
# Nested resampling on Palmer Penguins data set
rr = fselect_nested(
fselector = fs("random_search"),
task = tsk("penguins"),
learner = lrn("classif.rpart"),
inner_resampling = rsmp ("holdout"),
outer_resampling = rsmp("cv", folds = 2),
measure = msr("classif.ce"),
term_evals = 4)
# Performance scores estimated on the outer resampling
rr$score()
#> task_id learner_id resampling_id iteration classif.ce
#> <char> <char> <char> <int> <num>
#> 1: penguins classif.rpart.fselector cv 1 0.05813953
#> 2: penguins classif.rpart.fselector cv 2 0.08139535
#> Hidden columns: task, learner, resampling, prediction_test
# Unbiased performance of the final model trained on the full data set
rr$aggregate()
#> classif.ce
#> 0.06976744